

TRACKER 界面流变/张力仪 2014年10月

研讨会仪器培训 - 山东大学

□原理

- □ 仪器概述
- □标定仪器
- □ 检验仪器清洁度
- □ 张力测量
- □ 执行较长时间测试的方案
- □ 接触角测量

表界面张力

液体的内聚力是形成表面张力的重要原因

表界面张力

- 表面张力: 气-液或气-固界面间的张力
- 界面张力: 不相溶的两项间的张力
- 单位: 牛顿/米 (N·m⁻¹) 或 焦耳/平方米 (J.m⁻²)

两种定义:

- 力学: 表面曾存在着一个平行于界面, 垂直于分界面的力(N.m⁻¹)
- 热力学: 单位面积的能量. (J.m⁻²)

因界面分子受力不平衡,造成分子表面向液体内部方向的作用力,此垂直液面方向的力即为表面张力

室温环境下,以下液体(空气-液)的表面张力:

液体	张力(mN.m⁻¹)
醚 (Ether)	19.3
乙醇 (Ethanol)	22.3
甲醇 (Methanol)	22.6
苯 (Benzen)	28.9
甘油 (Glycerin)	64.0
水 (Water)	72.8

表/界面张力-实例

表面活性剂作用

表/界面张力-实例

表面活性剂作用

重力和表面张力达到平衡,方向相 反:**曲别针漂浮**

当加入表活剂,其表面张力下降, 小于重力:曲别针下沉

Optical stand

在空气中的水滴 (含表面活性剂)

如何从液滴形状获取表/界面张力?

Tracker软件运用两个公式做计算 获取表/界面张力数据:

1) - Laplace -Young 方程:

$$\Delta P = \gamma \left(\frac{1}{R} + \frac{1}{R'}\right)$$

△P 为在界面上的某点在滴内外两边的压力差

γ为界面张力

R 和 R' 分别为某点在界面上的曲率半径

2) - 界面上某点(M点)平面流体静力方程

 $2\pi x\gamma \sin\theta = V(\rho_h - \rho_l)g + \pi x^2 \Delta P$

△P 为在界面上的某点在滴内外两边的压力差

g为重力加速度

y为界面张力

V为某点(M)平面下方的体积

Rh 和rl 分别为重/轻相的密度

为什么表/界面张力会 随时间而变化?

Innovative Interface Science

表/界面张力仪

因为表面活性剂分子从水滴中扩散到界面,其表面 浓度升高,直到张力平衡,表面张力值停止下降。

实例:界面张力随时间变化

Tracker软件的主要功能

- 自动计算表/界面张力,滴面积和体积
- 实时显示表/界面张力,滴面积和体积
- 最高采样频率为每秒钟25次
- 测试中可以控制滴以下属性:
 - 可任意控制/设定滴面积;
 - 可任意控制/设定滴体积。

界面流变?

Innovative Interface Science

界面流变参数

表面粘弹模量的定义:

 $E = d \gamma / (dA/A) = d \gamma / d \ln(A)$

¥为界面张力 A为界面面积

界面流变:正弦面积振荡

界面流变参数

振荡实验中中E以虚数表示:

$E = I E I.cos(\theta) + i. I E I sin(\theta)$

Ө = 相位角

<u> 弹性部分:</u>

E' = Ι Ε Ι.cos(θ)

<u>粘性部分:</u>

E'' = I Ε I.sin(θ) / ω

角速度 ω = 2πf, f = 频率

界面流变:正弦面积振荡

低分子表面活性剂: C12E6

无表面活性剂 (周期 = 10s)

E = 0 mN/m

C12E6 浓度0.01g/I(周期=10s)

弹性行为, E = 20 mN/m

□原理

- □ 仪器概述
- □标定仪器
- □ 检验仪器清洁度
- □ 张力测量
- □ 执行较长时间测试的方案
- □ 接触角测量

Tracker Video

1. 打开电脑

2. 开启电控箱

3. 打开WinDrop软件

4. 选择*.cfg配置文件

备注:所有参数都被保存在配置文件中

□原理

- □ 仪器概述
- □标定仪器
- □ 检验仪器清洁度
- □ 张力测量
- □ 执行较长时间测试的方案
- □ 接触角测量

图像亮度限额值:100

调焦对于提取滴轮廓非常重要。 黑色部分的灰度在 0-20 亮色部分的灰度在 200-220 图线中间上下转换部分越陡越好(代表清晰度)

检查滴垂直度

使用鼠标从左向右在滴图像上画出亮色长方形

最理想的状态:角度为0

根据马达转速和针管量程,确定滴体积。

在做振荡是,正确体积标定允许我们 严格控制振荡振幅值.

□原理

- □ 仪器概述
- □标定仪器
- □ 检验仪器清洁度
- □ 张力测量
- □ 执行较长时间测试的方案
- □ 接触角测量

选用测试:上升滴 (空气/去离子水)

- 在水中生成一个上升气泡
- 使用one measurement计算并检查:
 - o 表面张力是否在72 mN/m左右
 - o 点云是否无规律分布在**0**轴
- 启动测试
- 测试中,可以做10分钟的体积正弦振荡

One measurement计算:

- 静态表面张力计算

检验仪	器清洁度	
张力测试	正弦振荡	测试结果
保持约72mN/m	张力基本无变化	Tracker体系干净
随时间下降	张力回应	Tracker体系不洁

□原理

- □ 仪器概述
- □标定仪器
- □ 检验仪器清洁度
- □ 张力测量
- □ 执行较长时间测试的方案
- □ 接触角测量

关于上升滴测试 (针管为轻相)

优势:

- 无蒸发
- 对震动反应不敏感(比较悬滴而言)

劣势:

•不能用于测试浑浊液体(重项)

被测液为浑浊液(透光性差):

1. 提高光源亮度

2. 减小Threshold限定值

Innovative Interface Science

3. 更换样品池

或改用悬滴法测试

Innovative Interface Science

1. 控制面积/体积恒定方案

Control parameters Stop on time after 0 🔀 second Stop on eject 🔽	Start regulation with experiment	可选择测试开始的同时启动 ◆使用方案 或测试开始后某 个时间段开始
None Tension Area Volume Dynami	c Angle	→ 设定面积/体积在某值恒定
PID Sinusoidal Area PID		
End point	mm2 🔽 Automatic	→ 比例参数
КР [1.1 dimensionless	
кі [dimensionless 控制	面积参数
KD [dimensionless	
		TECLIS
		Innovative Interface Science

Innovative Interface Science

2. 线性变化

None Tension Area Volume Dynamic Angle PID Linear Profile Sinusoidal Profile Pulse Profile Volume profile linear	(本)	
Injection speed ∫-1 µl/s		时间
技巧:使用线性变 化方案高亮(凸显) 滴界面上形成薄膜	实例: 含有沥青的 甲苯液滴在水中	TECLIS

1. 体积正弦振荡

Control parameters Stop on time after 0	seconds Start reg	rt regulation with experiment ulation after 0 💭 sec.	
None Tension Area Volume	Dynamic Angle		
PID Linear Profile Sinusoidal Pr	rofile Pulse Profile		▶ 振幅 dV/V=5-10%
Volume profile sinusoidal			
Amplitude	1	μ	▶ 周期
Period	10	sec.	
Shift	0	•	
Active cycles	5	number	
Blank cycles	5	number	
Oscillation sampling	0	sec.	TECHS
			TINNOVATIVE INTERFACE Science

Innovative Interface Science

2. 面积正弦振荡: 振幅和面积平均值保持恒定 优势: 测试中面积的变化值将是恒定的

None Tension Area	Volume Dyna	nic Angle	
PID Sinusoidal			
Area profile sinusoidal			
Mean	22:0159769312	mm2 🔽 Automatic	
Amplitude	2	mm2	
Period	1	s Oscillation Delay 0 s	
Active cycles	1	number KP 0.3	空白局期PID面积但定
Blank cycles		number	
KP Sin	0.2	dimensionless	→ 振荡期, 面积变化恒定
Oscillation sampling	0	sec.	
			TECHIC

1. 计算粘弹模量(例: 气/自来水)

2. 动态粘弹模量分析

✓周期:5 s
✓5个振荡周期
✓5个空白周期

跳过空白周期自动分析 下一个振荡的时间间隔 (这里为50 (2*25))

分析数据保存在*.elt文件

Tracker 上机演示

□原理

- □ 仪器概述
- □标定仪器
- □ 检验仪器清洁度
- □ 张力测量
- □ 执行较长时间测试的方案
- □ 接触角测量

测试方案设定

步骤	时间	操作
	0 - 5h	测试表/界面张力(IFT);
1	5h - 20h	测试中,执行滴体积振荡; - 设定振幅:10% 初始体积, - 振荡频率:0.2Hz (周期:5s).
2	20h - 21h	测试中,执行滴面积振荡; - 设定振幅:10% 初始面积, - 振荡频率:0.2Hz (周期:5s).
3	21h - 22h	测试中,保持面积恒定。

如上述长时间测试,电脑将会保存大量数据,因 此测试前一定要检查硬盘空间是否最够大。

步骤1 目的/备注 操作 选择滴状态, 键入密度 Α Measurement board Physical parameters B 测试目的,初始体积 Drop status Rising • Surface Tension tion 🔽 Data Bulk density (g/cm3) Svnchronize Drop density (g/cm3) itial volume 10 µl after 1 技巧:建议长测试期间,可 0.998000 C Periodic saving 0.001170 Images C At the end 采样频率 以采样周期增大. Π Sampling parameter C Without saving Drop formation... C Sampling Mode time 1: 200 C Fixed @ Variable - minutes 模式: 变化 time 2: 600 sec. Injected volume ages all 1000 - measurements 0.10 Per. Sampling Fast Syringe 1 11.21488 microliters Saving image on aberration End samp. 10.00 Per. ГB Control parameter E Start regulation with experiment P Threshold setup 🔓 Vertical setup Stop on time after 0 🕺 seconds 技巧:为了节约硬盘空间. art regulation after 🔰 18000 ≑ D 保存数据/图片 Trontier setup 🝘 One image analysis Stop on eiect None stop on error 无需保存很多数据很图片。 Off • Temperature None Tension Area Volume Dynamic Angle No Interlaced Lens N 0 Automatic PID Linear Profile Sinusoidal Profile Pulse Profile Mixed Profile GT Volume profile sinusoidal Calculation parameters 在18000s后自动启动测试方 启动自动执行测试方案 Amplitude 1 mm3 High precise -Ε Calculation mode ✓ Standard error display 模式 案 Period ☑ Crop the drop F 方案内容(体积 - 正 Shift denree 弦) number Active cucles 技巧: 设定oscillation -- 振幅: 200 Blank cycles number F sampling=0; 采样频率将达 0.1 - 周期: 5s Oscillation sampling sec Comment - 振荡期:5 到最高计算速度。 C:\TECLIS\TECLIS_Tracker\Machines_TECLIS_DEVELOF Select directory _ 空白期: 200 - 振荡期采样频率: 0

TECLIS

步骤 2

Physical parameters	Experiment parameters		_ Graphic parameters
Drop status Bising		Saving	Тор
Drop status [mising	Action 🔘 Surface Tension 💌	☐ Data G Sunchronize	Tension 💌
0.001170 U.998000	Initial volume 10 µl after 1 🚔 Drop	C Periodic saving	Injected 💌
	Automatic position of the second data frontier 2	C At the end	Bottom
Sampling parameters	Drop formation	C Without saving	Temperature -
C Fixed I Variable time 1: 200 sec.		Data all 1 minutes	
Sampling 0.10 sec Per. T Fast	Svringe 1 11.21488 microliters	Images all 1000 * measurements	
End samp. 10.00 sec Per. 📑 Fast		5 aving image on aberration	
View parameters	Control parameters	🔽 Start regulation with experiment	
Threshold setup	Stop on time after 0 🔀 seconds	Start regulation after 18000 🚔 sec.	
👕 Frontier setup 📸 One image analysis	Stop on eject 🔲 Nane stap on emar	🗖 Scenario	Select graph
Temperature Off 🗨	None Tension Area Volume Dynamic Ang	gle	
No Interlaced Lens N 0	Automatic PID Sinusoidal		Zoom • Automatic
Calculation parameters	Area profile sinusoidal	The Automation 1	C Without aberrati
Calculation mode High precise		▶ Automatic 后刃	Time scale
Standard error display	Amplitude 1 mm2		C Compressed X:
✓ Crop the drop	Period 2 s	Oscillation Delay 0 s	C Page mode C Fixed scale
	Active cycles 5 number	er KP 0.1	
	Blank cycles 200 📩 numbe	er	Scale i ranfert setu
	KP Sin 0.1 dimen:	sionless	🚓 Expert
	Oscillation sampling 0.1 sec.		7 Help
Comment			3 100
			X Cancel

步骤3

Physical parameters	- Evperiment parameters		Graphic parameters
Physical parameters Drop status Rising □ Drop density (g/cm3) 0.001170 □ Bulk density (g/cm3) 0.998000 Sampling parameters Sampling Mode Fixed Variable time 1: 200 sec. time 2: 600 sec. Sampling 0.10 sec Per. Fast End samp. 10.00 sec Per. Fast	Experiment parameters Action Surface Tension Initial volume 10 µl after 1 Drop formation Initial volume Syringe 1 11.21488 microliters	Saving Total Images Synchronize C Periodic saving C At the end C Without saving Data all Images all Saving image on aberration	Graphic parameters Top Tension Injected Volume Temperature
View parameters	Control parameters Stop on time after 0 4 seconds Stop on eiect None of an energy None Tension Area Volume Dynamic An Automatic PID Linear Profile Sinusoidal PI Volume PID End point 10.384 KP 0.1 KI 0	▼ Start regulation with experiment Start regulation after 18000 会 sec. Scenario gle ofile Putse Profile Mixed Profile GT 5567723 m 3 ▼ Automatic dimensionless 启动 dimensionless	Select graph 2
Comment	KD 0	dimensionless	Cthe Expert Cthe Chancel Cthe Cthe Cthe Cthe Cthe Cthe Cthe Cthe

TECLIS Innovative Interface Science

Innovative Interface Science