

AR Rheometer Instrumentation, Calibration & Maintenance

2008 TA Instruments

Agenda

Instrumentation Calibration Maintenance

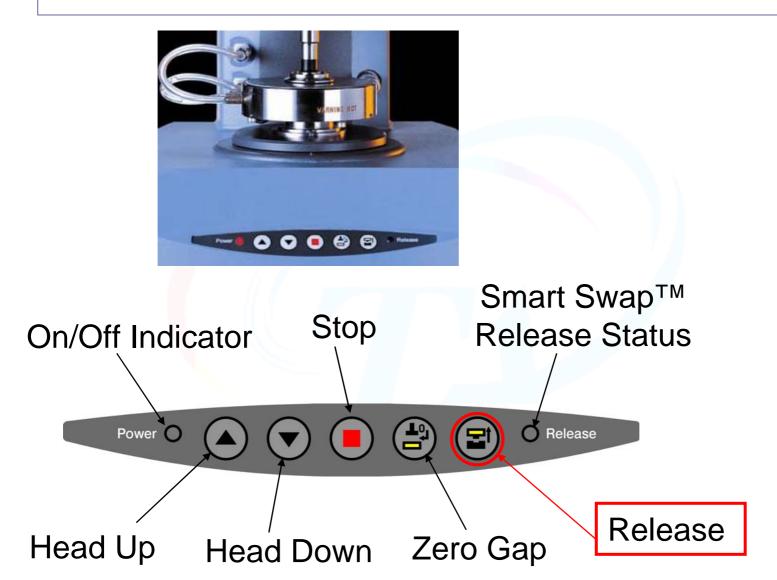
Agenda

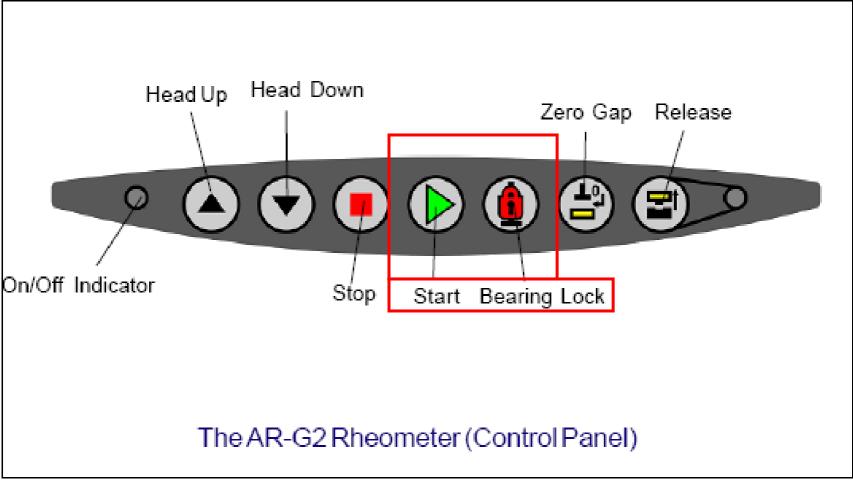
► Instrumentation

Calibration

Make sure that Air is on

Unscrew Draw-rod to release bearing lock




Turn on Water (Pump) (if needed)

AR 2000 Keypad

AR G2 Keypad

Peltier Plate

A device that actively heats and cools using reverse thermocouple junctions

- Best suited for dispersions, gels and solutions
- Heating from one direction
 - Should allow sample to equilibrate for at least 3 min.

Environmental system

The Peltier plate

The Peltier plate system is mounted directly to the smart swap base of the AR2000 and AR-G2. An upper heated compensation heater [UHP]is available to eliminate any vertical temperature gradients in the sample.

The Peltier plate has a temperature range from -20°C to 200°C. A humidity cover to prevent evaporation of solvent is available also.

Peltier Plate

Works as a Heat Pump

Needs a heat sink – usually water, either from a reservoir or a flowing supply

Flow rate of fluid needs to be at least 0.5 L/min

Peltier	Temperature Range
	(°C)
tank & pump	-5 to 100
pumped water supply (20°C)	-20 to 200
water at 60°C	10 to 200
water at 40°C	0 to 200
water at 1°C	-30 to 180
fluid at -20°C	-40 to 160

Concentric Cylinders

Low viscosity materials ♦ < 50 cP, 0.05 Pa-s</p> Sample volume crucial A good way to load is measuring the volume suggested in the geometry page

Peltier heating & cooling on AR 2000 & G2

🤹 RI	eology Advantage Instrument Control AR - [ArGeom2]	
<u>F</u> ile	<u>E</u> dit <u>I</u> nstrument <u>G</u> eometry <u>P</u> rocedure <u>N</u> otes E <u>x</u> periment <u>O</u> ptions <u>H</u> elp	
D	🚰 🖬 (>) 🌋 🖆 🖾 (\/ <u>< </u> 🖉 🖉 (>) 🖬 🔓 -	DX ●✓
	AR2000 L Standard-size DIN or conical Concentric cylinders	ArResults-0001f)
J	Description Dimensions Settings Factors	-1
σ	Calibration	
Ϋ́	Geometry inertia (micro N.m.s^2) 3.809	
γ		
⊥ ,	Gap temperature compensation (micro m/°C) 0 Calibrate	
¢	Backoff distance (micro m) 90000	
11₀		
⊥º	Approximate sample volume (ml) 19.60	
 ₩		
T		
TF TF	Measure this volume of	
	sample and pour in	
1 ↑		
⊥↓		
<mark>т</mark> ×		
<u>ð</u>		TA Instruments

For Help, press F1

2:46:24

NUM

Environmental Test Chamber (ETC)

- Provides temperature control for polymer melts, and solid samples
- Lower plate assembly is attached and detached just like the Peltier plate

Environmental system – AR-G2

The radiation oven

The radiation oven has been enhanced with a video camera :

- Allows the observation of the sample during sample loading and the measurement
- Stores an image with each single data point to keep a record of the sample's state during the measurement

Press 'Release' button

Continuous green status light indicates attachment can be fitted...

...and plugged in

SmartSwap Cable

When green status light goes out, system is ready for use

Removing the Peltier Plate

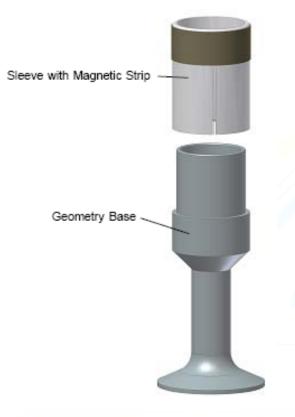
Press 'Release' button

Flashing green status light indicates it is safe to unplug

Removing the Peltier Plate

Press 'Release' button again

Continuous green status light indicates attachment can be removed



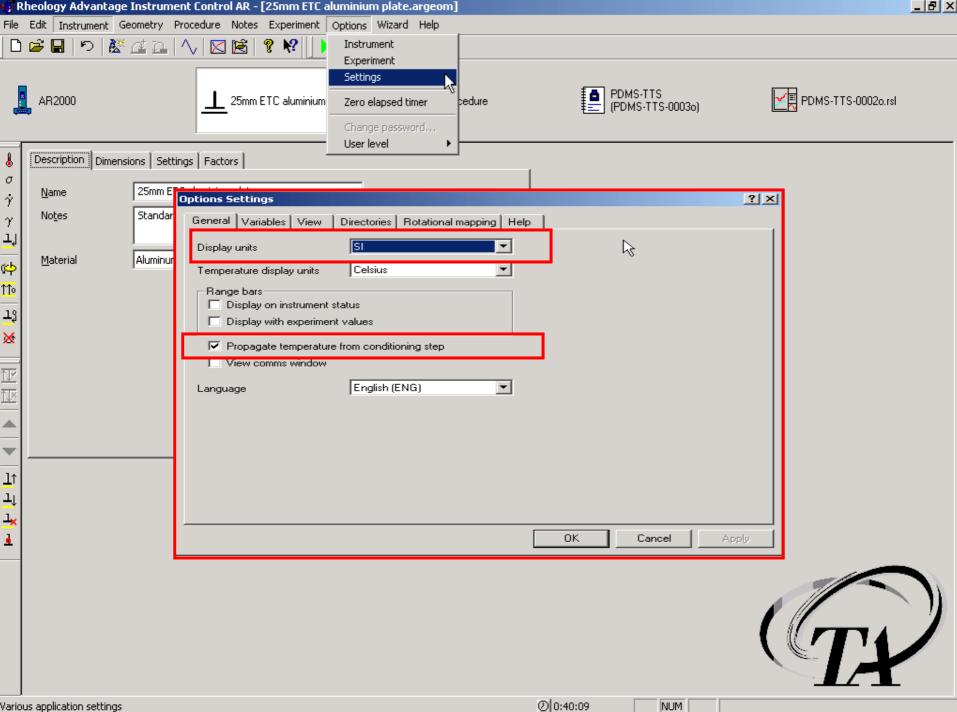
Geometries

- To ensure that data is correct you must correctly describe and choose the geometry
- On AR2000 and older Rheometers this means you have to go in and select from the software
- On AR-G2 we have new Smart Swap™ geometries, that will automatically be recognized

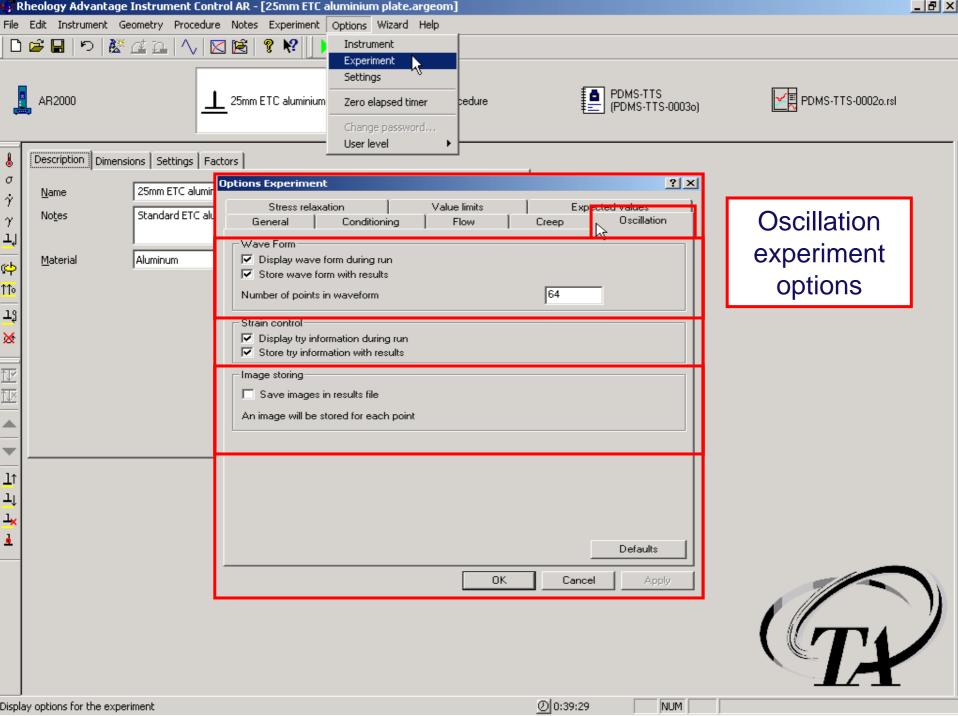
		🗣 Ri	heology Adv	rantage Instrument	Control AR - [ArGeom2]			_ ē 🖄
C	3				dure Notes Experiment Options	Wizard Help		
			i 🖉	n 隆 🖆 🛛	°- ∕	? №		
			AR-G2	-	⊥ 40mm 2° steel cone	% — Oscillation procedure	ArResults-0001o)	
			Description	Dimensions Settings	Factors			
3		σ	Name	40mm 2° stee	el cone]		
		Ϋ́	Notes	Standard ste geometry	eel cone - default AR measurement			
		γ 1	Material	Steel	~			
				🔽 Solvent Tra	ар			6
		ເ⇔ îî₀						
	G2	ц Т						
5		×						
						Ŧ		
5								
1	9							
7								
10								
		<u>1</u> ↑						
-		⊥↓ ⊥×						
-		<u>.</u>						
			lp, press F1				0:02:16 NUM	

Smart Swap Sleeve -- AR-G2

Automated system configuration due to smart swap for the environmental systems and the upper geometries


Smart swap geometry changed

The instrument is reading the smart swap geometry serial number.



Please wait ...

😙 Rheology Advantage Instrument Control AR - [25mm ETC aluminium plate.argeon	nj		_ B ×
File Edit Instrument Geometry Procedure Notes Experiment Options Wizard Help			
🗅 😅 🖬 🔊 🕂 🖆 🏊 🔨 🖾 😤 🦉 📢 🌖 Instrument			
AR2000 AR20000 AR2000 AR20000 AR2000 AR20000 AR20000 AR20000 AR20000 AR20000 AR20000 AR20000 AR200000 AR20000 AR20000 AR20000 AR200000 AR20000 AR20000 AR20000 AR2000000 AR200000 AR20000 AR20000000 AR200000	edure	PDMS-TTS (PDMS-TTS-0003o)	
User level	<u> </u>		
σ Name 25mm ETC aluminium plate			
γ Notes Standard ETC aluminium parallel plate μ		Let's take a quick look at	
Material Aluminum I		options in the software	
12) 12)			
	<u> </u>		
à			
		T	
/arious application settings		Ø 0:40:09 NUM	

🗱 Rheology Advantage Instrument Con	itrol AR - [25mm ETC aluminium plate.argeom]	_ B ×
File Edit Instrument Geometry Procedu	re Notes Experiment Options Wizard Help	
🗅 🖆 🖬 🔊 ី 🏄 🕰 🔟 🗌		
	Settings	
AR2000	25mm ETC aluminium Zero elapsed timer pedure PDMS-TTS (PDMS-TTS-0003o)	o.rsl
	User level	
Bescription Dimensions Settings Fa	actors	
σ <u>Name</u> 25mm ETC alumin	Options Experiment	
γ – Note: Standard ETC all	Stress relaxation Value limits Expected values	
Material Ölumioum	Non-equilibrium minimum velocity (rad/s)	
<u>φ</u>	Collect all points, flagging as invalid if below minimum velocity	
<u>^</u>	Collect negative shear rate data if stress is positive	
12 C	Zero strain at the start of each flow step	
₩	✓ Inertia correction	
	Steady state flow point graph	
	Display point graph during run	
	Store point graph with results	
▲	Image storing	
▼	Save images in results file	
11	Store an image at the next point after every n seconds 10	
1) 1)	Note: The above settings do not apply to stepped or steady state tests where an image is stored for each point.	
_+ _×		
1		
	Defaults	
	OK Cancel Apply	
		$\sim \eta$
] Display options for the experiment	⊘0:39:29 NUM	

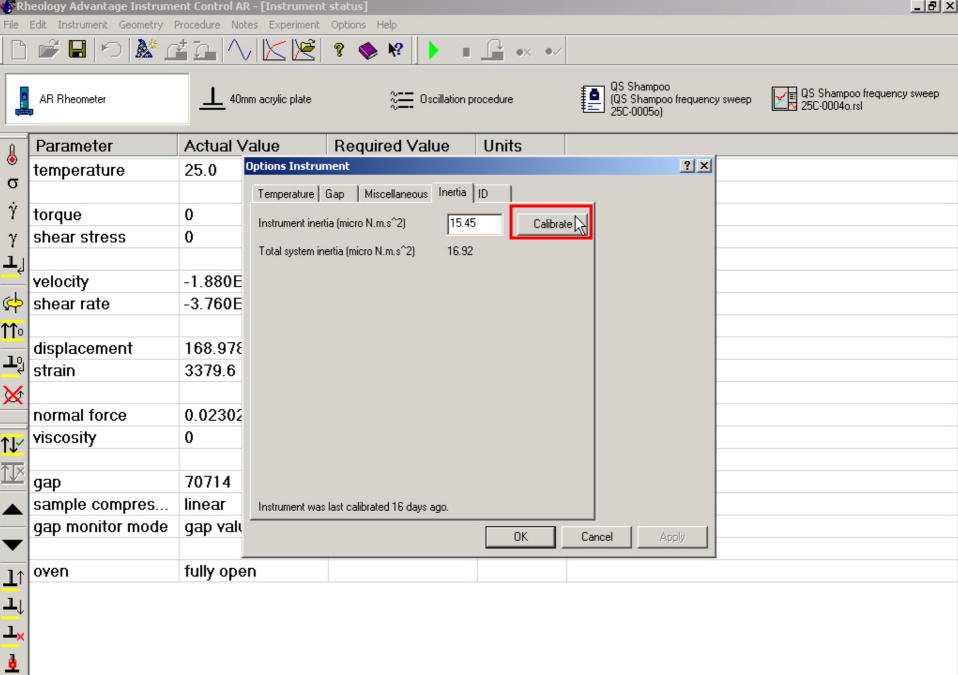
Calibrations

There are two instrument calibrations that are recommended at least <u>once a month</u>

- Instrument Inertia
- Bearing Friction Correction
- A couple more that are recommended from time to time
 - Geometry Inertia
 - Gap Temperature Compensation
- Not really a calibration but should be done regularly
 - Mapping

What is Inertia?

Definition: That property of matter which manifests itself as a resistance to any change in momentum of a body

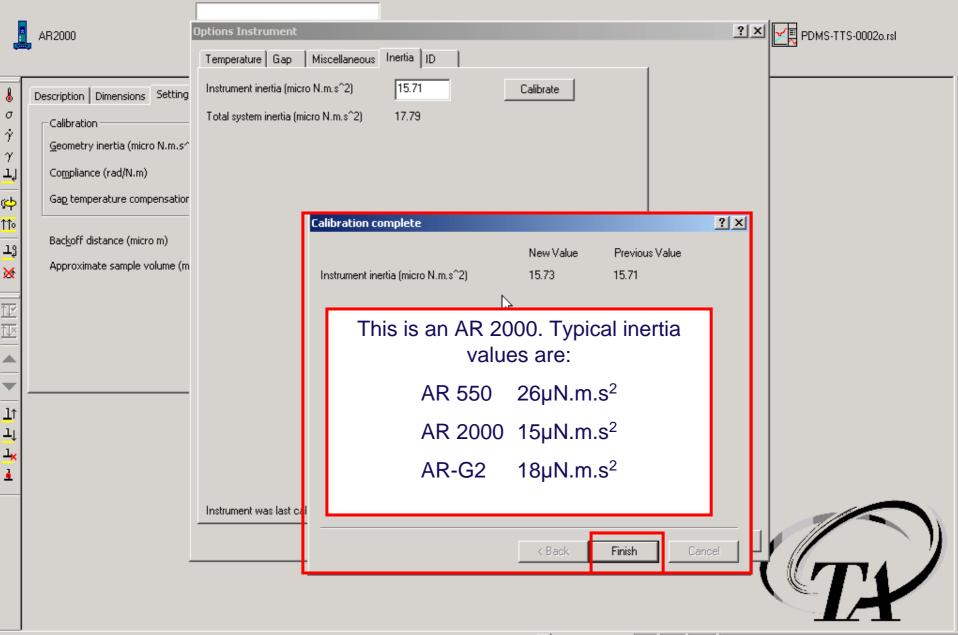

- A couple of facts
 - All motors have inertia
 - All rheometers have motors, so

We can measure the inertia of the instrument and the system inertia – instrument + geometry

🕼 Rheology Advantage Instrument Control AR - [Instrument status]								
			Options Help Instrument					
	D 🗳 🖬 🔿 🜺 🖆 🖅 🔨 🔟			h.	• 🔓 •× •-⁄			
				Experiment K		00.01		
*	AR Rheometer	40mm acrylic plate	Zero elapsed timer		n procedure	QS Shampoo (QS Shampoo frequency sweep 25C-0005o)	QS Shampoo frequency sweep 25C-0004o.rsl	
			Change pase	Change password,		250-00050)		
J	Parameter	Actual Value	User level	•	Units			
	temperature	25.0	25.0		°C			
σ								
Ϋ́	torque	0			micro N.m			
γ	shear stress	0	0		Pa			
┸ _┥								
	velocity	-1.065E						
¢⊅ îî₀	shear rate	-2.130E Optio	ns >	Insti	rument			
<u>1</u> 1₀								
1.00	displacement	168.9780			rad			
⊥ º	strain	3379.6						
×								
	normal force	0.01905			N			
↑↓ ∕	viscosity	0			Pa.s			
<u>T</u>		70744	70744					
	gap	70714	70714		micro m			
	sample compres	linear						
•	gap monitor mode	gap value						
	oven	fully open						
_ ↑	UYEII	runy open						
⊥↓ ⊥×								
ר <mark>×</mark>								
4								
-								

	heology Advantage Instrum							<u>_8×</u>
File	Edit Instrument Geometry I			Options Help				
) 🎬 日 (M) 🕍 (* D 🔨		🖇 🧇 🕅 🕨	• • 🔓 •× •⁄			
	AR Rheometer	<u> </u>	n acrylic plate	% <u>—</u> Osci	llation procedure	QS Shampoo (QS Shampoo frequency 25C-0005o)	sweep	QS Shampoo frequency sweep 25C-0004o.rsl
J	Parameter	Actual Va	alue	Required Valu	e Units			
	temperature	25.0	ptions Instru	ment		<u>? ×</u>		
σ			Temperature	Gap Miscellaneous I	nertia, ID			
Ϋ́	torque	0	Current temp	erature system Peltier p	blate			
γ	shear stress	0		ture control enabled				
⊥ ,				perature compensation				
	velocity	7.350E-		s only (no active cooling)				
¢	shear rate	1.470E-	- Temperature	calibration				
<mark>11</mark> ₀			System		Compensation (micro m/*0			
10.	displacement	168.978	Peltier plate Torsion ove		0			
1 0	strain	3379.6	Torsion ove	n - solid sample	ŏ			
≫			Peltier conc	entric cylinders	0			
	normal force	0.02035						
↑↓ ∕	viscosity	0						
<u>ttx</u>		70714						
	gap sample compres	linear	These values	s are set from the current g	eometry			
	gap monitor mode	gap valu						
T	gap monitor mode	yap tak			OK	Cancel Apply		
11	oven	fully oper	1					
<u>1</u> ↑				1				
⊥↓								
<mark>-</mark> х								
6								
	1							

For Help, press F1


🐝 Rİ	neology Advantage Instrum	ent Control AR	- [Instrument	t status]				X
File	Edit Instrument Geometry I	Procedure Note	es Experiment	Options Help				
ß	🖻 🖬 🔊 🕍 🗋	* <u>n </u> \		? 🧇 K? 🕨	• •× •/			
	AR Rheometer	<u> </u>	m acrylic plate	% = Oscillatio	on procedure	QS Shampoo (QS Shampoo frequency 25C-0005o)	sweep	QS Shampoo frequency sweep 25C-0004o.rsl
J	Parameter	Actual Va	alue	Required Value	Units			
	temperature	25.0	ptions Instru			? X		
σ			Calibrate in	strument inertia		<u>?×</u>		
Ϋ́	torque	0	About to cal	ibrate the instrument inertia	>			
γ	shear stress	0		ire no geometry is attached an	d that the spindle is free t	o 🛛 🕌 🗌		
⊥ ,∣			rotate. Press Next t	o start calibrating.				
	velocity	-6.100E	Calibration n	nay take up to 30 seconds to o	complete.			
¢	shear rate	-1.220E						
<mark>11</mark> ₀								
	displacement	168.979						
	strain	3379.6	Lise the b	uttons to position the head if n				
≫			030 (10)					
	normal force	0.02147						
î √∕	viscosity	0						
<u>ttx</u>		70714				-		
	gap	70714	-					
	sample compres	linear	_		< Back N	ext > 📐 Cancel –		
•	gap monitor mode	gap valı	-			-cancor -ppy		
	oven	fully oper	<u>ר</u>					
_ ↑		rany opor	•					
⊥↓								
<mark>-</mark> х								
8								
-								

For Help, press F1

Rheology Advantage Instrument Control AR - [25mm ETC aluminium plate.argeom]

File Edit Instrument Geometry Procedure Notes Experiment Options Wizard Help

- D 🖆 🖬 🤌 🕍 🖆 🕰 🛝 🔨 🖾 😫 😵 🚺 🕨 🗉 🕰 💀 🏎

For Help, press F1

Ø 42:32:18

NUM

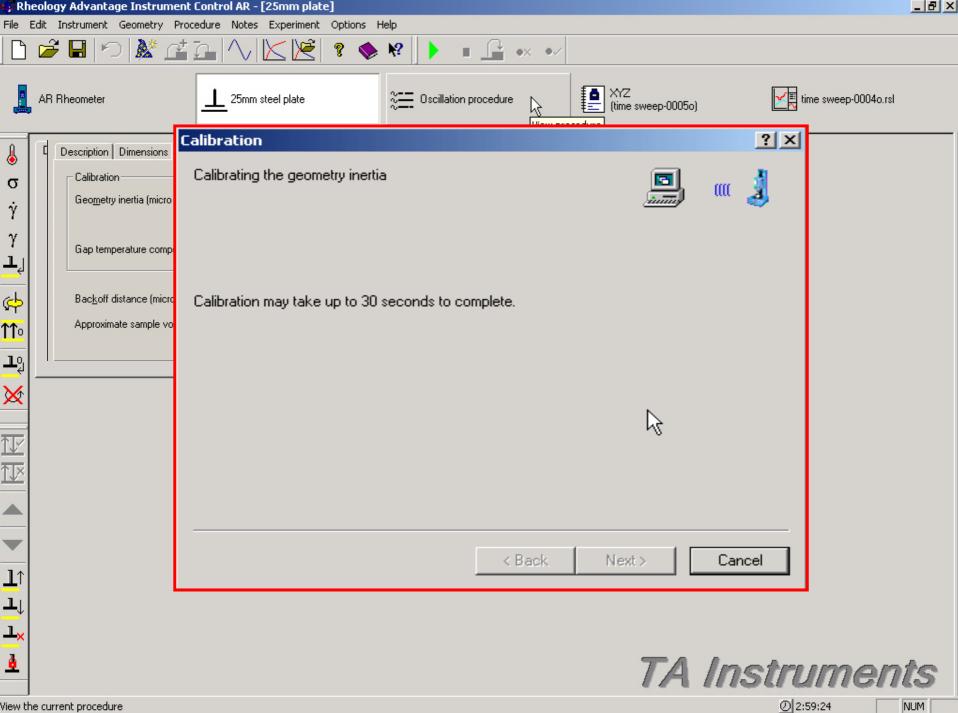
_ 8 ×

Calibrations

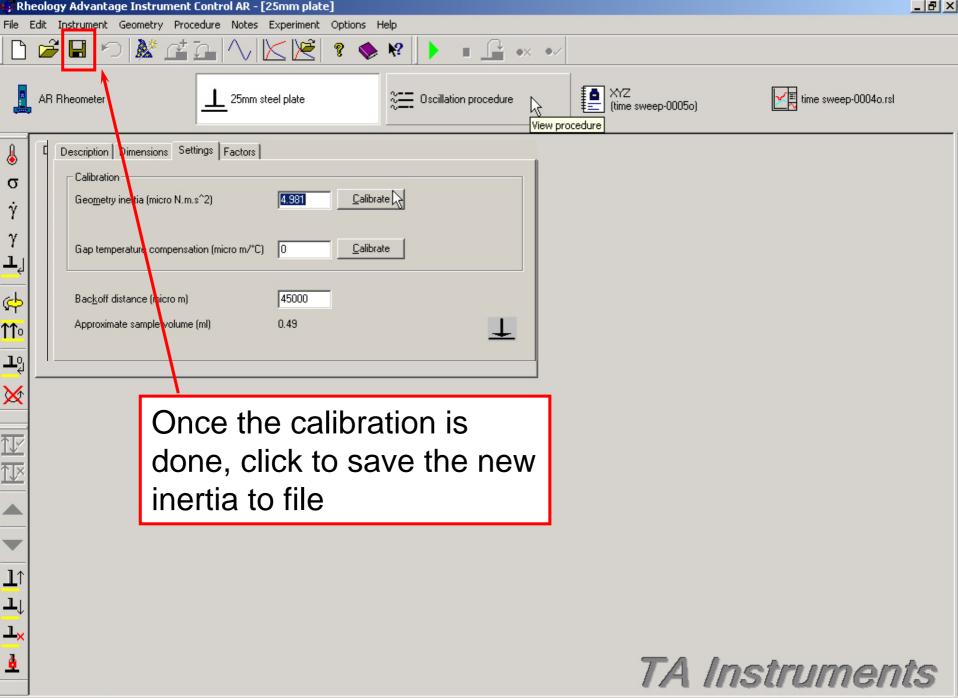
There are two instrument calibrations that are recommended at least <u>once a month</u>

- Instrument Inertia
- * Bearing Friction Correction
- A couple more that are recommended from time to time
 - Geometry Inertia
 - Gap Temperature Compensation
- Not really a calibration but should be done regularly
 - Mapping

Bearing Friction


- Nobody has created a frictionless bearing
- The lower the friction, the better the low torque performance
- Bearing friction can vary depending on gap of thrust bearing and type of bearing

	neology Advantage Instrume								X
File	Edit Instrument Geometry I					0			
) 🎉 日 🔁 🚰	≝ <u>∩</u> /∖		१ 🌭 ₩		🕒 •× •⁄			
	AR Rheometer	<u> </u>	m acrylic plate	2 c	Iscillation pr	ocedure	QS Shamp (QS Shamp 25C-0005o	oo ioo frequency sweep)	QS Shampoo frequency sweep 25C-0004o.rsl
J	Parameter	Actual Va	alue	Required Va	lue	Units		,	
	temperature	25.0	Options Instru	nent				? ×	
σ			Temperature	Gap Miscellaneous	Inertia	ID			
Ϋ́	torque	0.06	🔽 Bearing I	friction correction					
γ	shear stress	4.934E-			0.921		NI		
⊥ ,∣				on (micro N.m/(rad/s))		Calibrate			
	velocity	-0.0671	Torque offse	t (micro N.m)	0				
¢	shear rate	-1.343	- Temperature	calibration					
<mark>11</mark> ₀			System Deliver elete		Span 1 0000	Offset (*C)			
	displacement	1124.22	Peltier plate Torsion ove	en - plate	1.0000 1.0000	0 0			
	strain	22484	Torsion over Peltier cond	en - solid sample centric cylinders	1.0000 1.0000	0 0			
≫									
	normal force	0.02342							
î↓∕	viscosity	3.674E-							
<u>ttx</u>		70714							
	gap sample compres	70714 linear							
	sample compres gap monitor mode	gap valu							
•	gap monitor mode	уар чак				Close	Cancel	Apply	
1.4	oven	fully oper							
<u>1</u> ↑									
⊥↓									
ч×									
4									

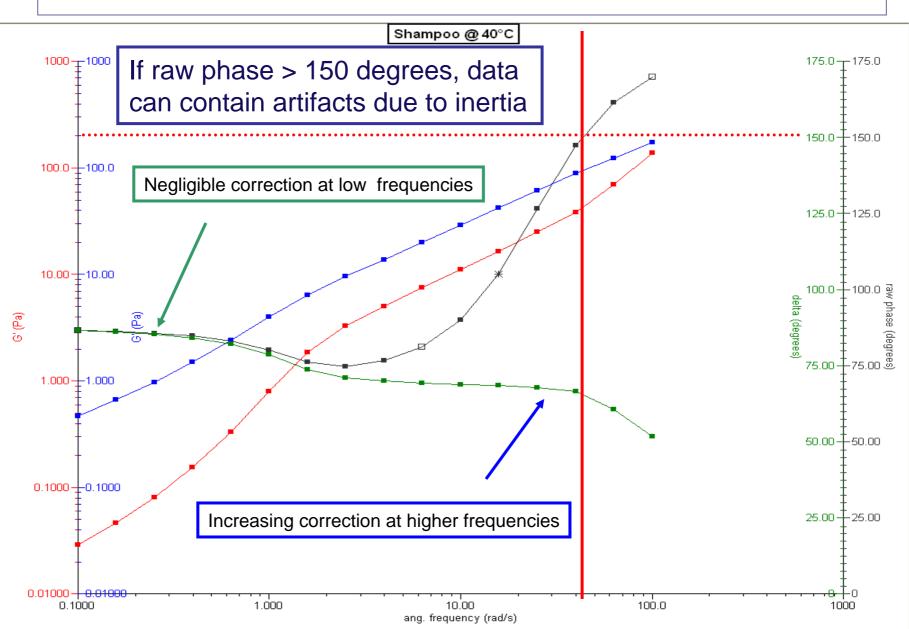

	neology Advantage Instrume						X
File	Edit Instrument Geometry I						
	_ 📽 🖪 (>) 隊 🗋			🤋 🧇 🕅 🕨	∎⊥≝•ו	14	
	AR Rheometer	<u> </u>	n acrylic plate	% Oscillation) procedure	QS Shampoo (QS Shampoo frequency 25C-0005o)	y sweep QS Shampoo frequency sweep 25C-0004o.rsl
J	Parameter	Actual Va	alue	Required Value	Units		
	temperature	25.0	ptions Instru			? ×	
σ			Calibration	complete		<u>?</u> ×	
Ϋ́	torque	-0.03			New Value	Previous Value	This is for an AR
γ	shear stress	-1.989E	Bearing frict	ion (micro N.m/(rad/s))	0.920	0.921	2000. Bearing
₽Į	and a site	0.00700					friction for an AR
æb	velocity shear rate	0.02769					
¢¢		0.5556					G2 is
<mark>11</mark> ₀	displacement	1124.09					approximately
	strain	22482					0.3 – 1/3 of the
≫							
	normal force	0.02281					AR 2000 due to
î1∕	viscosity	3.592E-					the lower friction
<u>t</u> r							of the G2's
	gap	70714	- 1 <u>-</u>				
	sample compres	linear			< Back	Finish 📐 Cancel	magnetic
-	gap monitor mode	gap valı			0030		bearing. The AR
1.4	oven	fully open	1				550 is
<u></u>		i any opon	•				approximately
⊥↓							
<mark>-</mark> х							the same value
8							as the AR 2000.

R 🤪	heolo	ogy Advantage Instrument Control AR -	[25mm plate]]				_ 8 ×
File	Edit	Instrument Geometry Procedure Notes	Experiment C	Options Help				
	Ć	\^ _± <u>ئە</u> % ¢ 🖬 🗧		🔋 🧇 😽 🕨 🔟	•x •/			
	AR	R Rheometer	steel plate	≳==_ Oscillation proce	dure	XYZ (time sweep-0005o)	time sweep-0004o.rsl	
ס י ב_ן ג⇔		Description Dimensions Settings Factors Calibration Geometry inertia (micro N.m.s^2) Gap temperature compensation (micro m/*C Backoff distance (micro m) Approximate sample volume (ml)	4.981	Calibrate		e Geometry r <u>Settings</u>	page,	
ר ≫								
•								
ר ר⊥ ר×								
4						TA Ins	strumen	ts

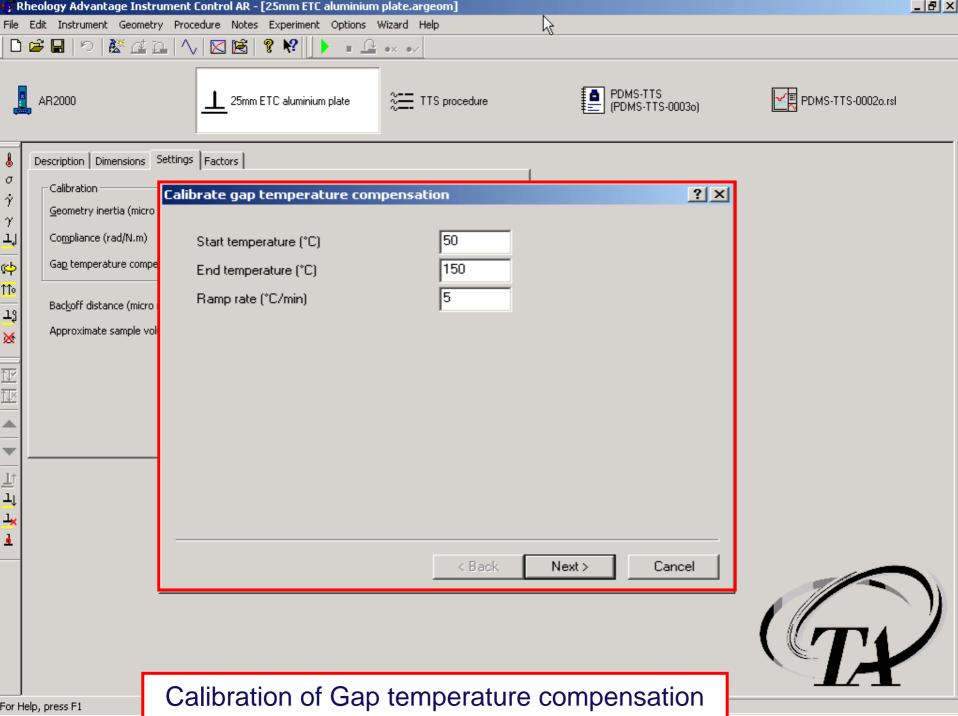
NUM

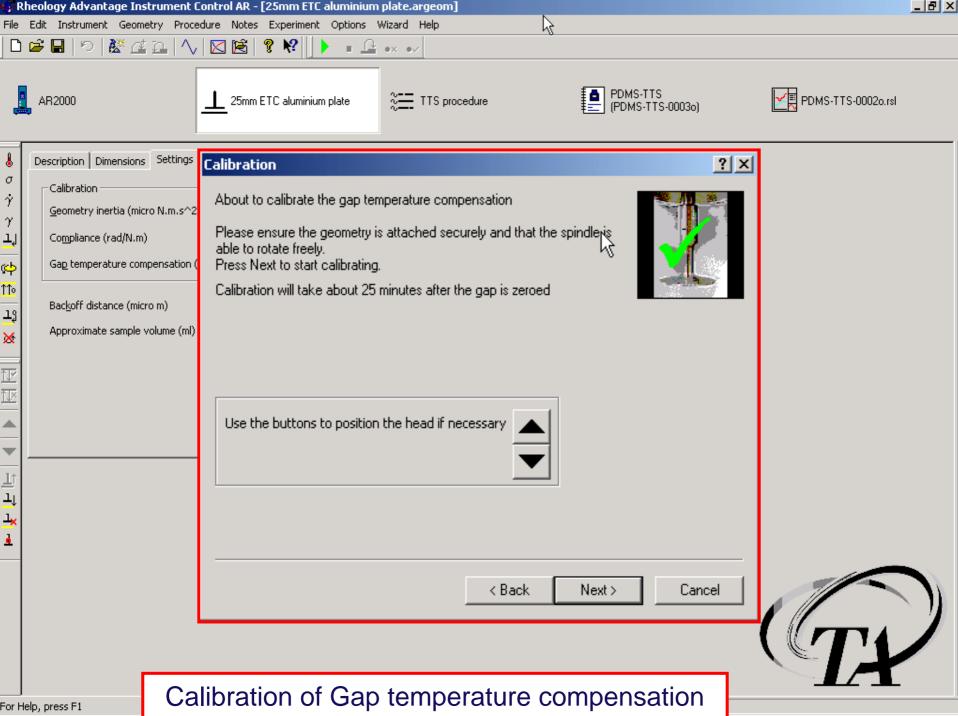
View the current procedure

Typical Inertia's

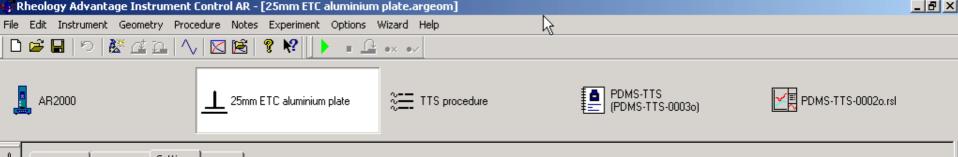

Diameter	Acrylic	Stainless Steel
(mm)		
20	0.43	2.8
40	1.34	6.92
60	3.03	23.32

System inertia in AR Rheometer


- The contribution of system inertia can be observed by plotting *Raw Phase* raw phase * Inertia Correction = delta
- Raw phase is the uncorrected phase angle for inertia


When raw phase is greater than 150 degrees, the contribution of the instrument (system inertia) in the measurement is greater than from the sample

AR Correction for Inertia



AP200 AP	🕐 Rheology Advantage Instrument Control AR - [25mm ETC aluminium plate.argeom]		_ 8 ×
A2000 Calibration Calibrat	File Edit Instrument Geometry Procedure Notes Experiment Options Wizard Help	\sim	
Description Dimensions Setting Factors Calibration	D 🖆 🖬 つ 🛣 🖆 🕰 🔨 🗹 🗟 🧣 😵 🕨 🗉 🕰 🐭 🛶		
Calibration of Gap Geometry Inetia (micro N.m.s^2) 2.230 _ calerate Cogpliance (rad/N.m) 3.130E-3 Geograficate (micro m) 26500 Approximate sample volume (m) 0.49 L Calibration of Gap temperature compensation	AR2000 25mm ETC aluminium plate	PDMS-TTS (PDMS-TTS-0003o)	
	σ $\dot{\gamma}$ $Geometry inertia (micro N.m.s^2)$ 2.230 $Geometry inertia (micro N.m.s^2)$ 2.230 $Geometry inertia Geometry inertia (micro N.m.s^2) 2.230 Geometry inertia Geometry inertia (micro N.m.s^2) 2.230 Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry $	temperature compensation	

🌍 Rheology Advantage Ir	Instrument Control AR - [25mm ETC aluminium plate.argeom]	<u>_ 8 ×</u>
File Edit Instrument Geor	ometry Procedure Notes Experiment Options Wizard Help	
🗅 🚅 🔚 🏷 💒 🛆		
AR2000	25mm ETC aluminium plate 25mm ETC aluminium plate 25mm ETC aluminium plate € TTS procedure € PDMS-TTS F PDMS-TTS	TS-0002o.rsl
δ Description Dimension σ Calibration γ Geometry inertia (m 1 Compliance (rad/N.r.)	micro N	
Gap temperature co ↑↑ ⊥3 Approximate sample	micro m	
<u>⊥</u> ⊥ 1 ×	Calibration will take about 25 minutes	
	< Back Next > Cancel	
For Help, press F1	Calibration of Gap temperature compensation	X

Description Dimensions Settings Facto	ors			
Calibration	Gap temperature compensation calibra	tion complete		<u>?</u> ×
Geometry inertia (micro N.m.s^2)		New Value	Previous Value	
Compliance (rad/N.m)	Gap temperature compensation (micro m/*C)	2.5	0	
Gap temperature compensation (micro n	Regression	0.99939		N
Bac <u>k</u> off distance (micro m)				2
Approximate sample volume (ml)				
		< Back	Finish	Cancel
o, press F1 Calib	ration of Gap temperatu	re comp	ensation	

Calibrations

There are two instrument calibrations that are recommended at least <u>once a month</u>

- Instrument Inertia
- Bearing Friction Correction
- A couple more that are recommended from time to time
 - Geometry Inertia
 - Gap Temperature Compensation

Not really a calibration but should be done regularly

♦ Mapping

		Control AR - [Instrument status]			
File	Edit Instrument Geometry Proce	edure Notes Experiment Options	Wizard Help		
	📽 🖬 🔊 🖉 🖾 🕰 🔨	🖂 🗟 🤋 🐶 🕨 🗉 🗋	≩ •× •✓		
	AR2000	25mm ETC aluminium plate	‰ <u>——</u> TTS procedure	PDMS-TTS (PDMS-TTS-0003o)	PDMS-TTS-0002o.rsl
8	Parameter	Actual Value	Required Value	Units	
σ	temperature	21.7	80.0	°C	
$\dot{\gamma}$					
γ LJ	torque	0.04		micro N.m	
ᆛ	shear stress	0.01271	0	Pa	
¢¢,					
	velocity	-0.07185		rad/s	
13	snear rate	-0.02440	Unknown	1/s	
×					
	displacement	-765.6750		rad	
<mark>≿</mark> ⊭	strain	-260.06			
<u>î</u>					
	normal force	8.895E-3		N	
▼	viscosity	-0.5209		Pa.s	
1↑					
' 	gap	36803	36803	micro m	
1ੇ ⊐ੇ <mark>1</mark> ੋ 1	sample compression	exponential			
1	gap monitor mode	gap value			
	oven	fully open			

Rotational Mapping

Rheology Advantage Instrument Control AR - [Instrument status]

File Edit Instrument Geometry Procedure Notes Experiment Options Wizard Help

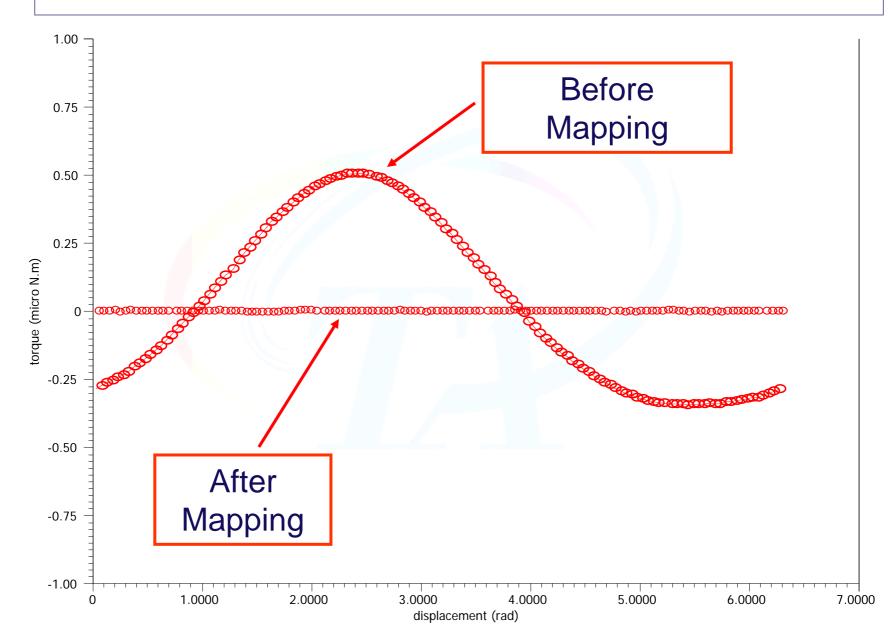
•	AR2000	<u> </u>	Rotational mapping	PDMS-TTS-0002o.rsl
0	Parameter	Actua	Date: 10/6/2005 1:47:15 PM	
• σ	temperature	21.7	Geometry: 60mm Acrylic plate	
Ϋ́	·····			
γ	torque	0.04		
1,	shear stress	0.012	Mapping settings	
ф,			Bearing mapping type precision 💌	
î∘¦	velocity	-0.071	Number of iterations 2	
13 13	Instrument rotational mapping	-0.024	,	
×				
	displacement	-765.6		
¥	strain	-260.0		
<u> </u>				
	normal force	8.895		
•	viscosity	-0.520		
<u>1</u> ↑				
ıţ	gap	36803		
×	sample compression		Manaia a such bala such a Electric de a balancia la secola ba	
1	gap monitor mode	gap vi	Mapping may take up to 5 minutes to complete.	
		fully o	Perform mapping Cancel	
	oven	fully o		
			Detetional Manning	
			Rotational Mapping	
erf	orm rotational mapping of the instrume	nt	0 42:23:20 NUM	

_ 8 ×

Mapping Types

- Standard
 - Approx 1 min to complete
- ➤ Fast
 - Approx 45 sec to complete
- Precision
 - Takes about 2 min to complete
- Extended (AR 2000 only)
 - Best low torque/velocity performance

Mapping Iterations


otational mapp	bing		? ×
-Last mapping -			
Date:	10/6/2005 1:47:15 PM	1	
Geometry:	60mm Acrylic plate		
-Mapping setting	js		
Bearing mappi	ng type	precision	•
Number of iter	ations	2	
Mapping may t	ake up to 5 minutes to:	complete.	

The more iterations the better to a point. Improvement is reduced after 2 iterations.

Ģ	Rheology Advantage Instrument	Control AR	- [Instrument status]	_ 8 ×
File	Edit Instrument Geometry Proc	edure Note:	s Experiment Options Wizard Help	
) 📽 🖬 ୭ 🌌 🖆 🗛 🔨	/ 🔀 🖻	? № ▶ = <u>_</u> +× +×	
	AR2000	<u> </u>	n ETC aluminium plate 💥 TTS procedure PDMS-TTS (PDMS-TTS-0003o)	
8	Parameter	Actual	Rotational mapping	
σ	temperature	21.7	Last mapping	
$\dot{\gamma}$			Date: 10/6/2005 1:47:15 PM	
γ	torque	0.04	Geometry: 60mm Acrylic plate	
1,	shear stress	0.0127		
1ĵ	Ivelocity Instrument rotational mapping SNEAR RATE	-0.0718 -0.0244	bearing mapping type precision	
≫	displacement	-765.6		
î↓∕	strain	-260.06		
<u>î I</u> ×				
	normal force	8.895E	Performing rotational mapping	
•	viscosity	-0.520	aama 🤲 🤲 🍣	
 ↑	gap	36803		
_≁ T×	sample compression	expone		
4	gap monitor mode	gap va	Mapping may take up to 5 minutes to complete.	
			Perform mapping Cancel	
	oven	fully op		
			Rotational Mapping	
Perh	orm rotational mapping of the instrume	nc	@ 42:23:20 NUM	

۹ 🛟 P	theology Advantage Instrument (Control AR - [Instrument status]				- B ×
File	Edit Instrument Geometry Proc	edure Notes Experiment Options	Wizard Help			
	📽 🖬 🔊 🖉 🖾 🗛 🔨	/ 🖂 🖻 🤋 🕺 📄 🗉 🔟	≩ •× •✓			
	AR2000	1 25mm ETC aluminium plate	సౖ <u>—</u> TTS procedure	PDMS-TTS (PDMS-TTS-0003o)	PDMS-TTS-0002o.rsl	
&	Parameter	Actual Value	Required Value	Units		
σ	temperature	21.7	80.0	°C		
$\dot{\gamma}$						
γ	torque	0.04		micro N.m		
ᆚ	shear stress	0.01271	0	Pa		1
¢¢,					When	
†1₀h	strument rotational mapping	-0.07185		rad/s	monning is	
тŝ	snear rate	-0.02440	Unknown	1/s	mapping is	
ֿ×					complete, you	
	displacement	-765.6750		rad	are returned	
<mark>↑↓</mark>	strain	-260.06			_	
<u>T‡×</u>					to the status	
	normal force	8.895E-3		Ν	page	
▼	viscosity	-0.5209		Pa.s	1.9.9	
1↑						
ੀ ⊐੍ਰੋ <mark>ਤ</mark> ੍ਰੋ	gap	36803	36803	micro m		
	sample compression	exponential				
4	gap monitor mode	gap value				
	oven	fully open				

Residual Torque Before & After Mapping

System Verification

- Attach a 60 mm 2° cone (if available, if not then use the largest cone available)
- > Zero
- Load sample of certified standard oil
- Carry out a 2 min flow test over as wide a range as possible
- Determine Newtonian viscosity. If it is more than 5% different from certified value repeat the experiment. If the results are still in error contact TA for advice

Sources of Error

Over or underfilling of gap

- Ensure that you have a standard method of sample loading
- Temperature error
 - Verify the temperature against a certified digital thermometer
- Gap Setting
 - Ensure that the gap was correctly zeroed and that the correct truncation is being used

Maintenance

- Check air filter and regulators for proper functioning
- If air must be turned off, then make sure that the bearing lock is fastened prior to turning air off
 - NOTE: <u>Do not</u> rotate drive-shaft if air goes off
- Confidence check: Cannon certified viscosity standards
 - 250024.001: Low viscosity standard oil
 - 250024.002: High viscosity standard oil

Check Air Filters

Air supply should be clean and dry
 Check for moisture and contaminates at least once a month

Manual & Help files in RA

- The online help manual is an excellent source of information
 - *.pdf files, with information installation, operation and some basic theory
- In the Rheology Advantage, Click on Help

<u>ৰ</u>ণ্ট্ৰণ

Operators Manual

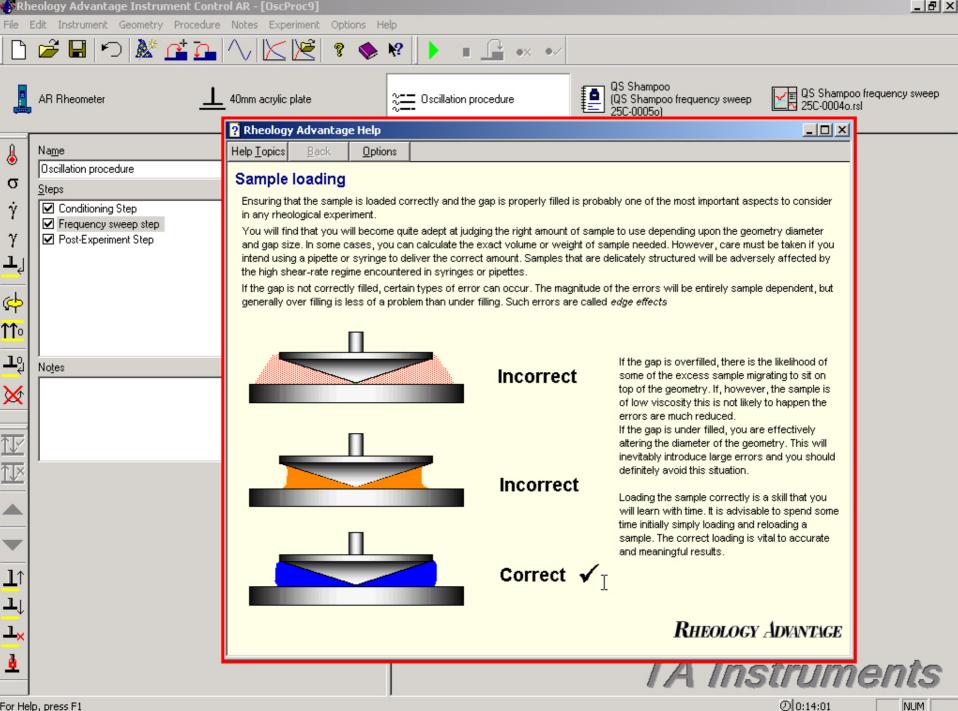
Reprogramming the Serial Number

An attempt to reprogram the serial number can be made by following these steps.

 SelectOptions/Instrument/ID and click on the Service button the dialog shown to the right is displayed.

vice	
Firmware update	
Select this button to update the firmware in the instrument	Berform update
Dearing test	
	Perform test
Encoder Inearisation	
Encoder linearisation needs to be performed when the firmware is first installed. It will take about an hour to run and CANNOT be cancelled.	Perform Inearisation
Program smart swap serial number	
	Program

Select the Program button. The dialog shown below is displayed.

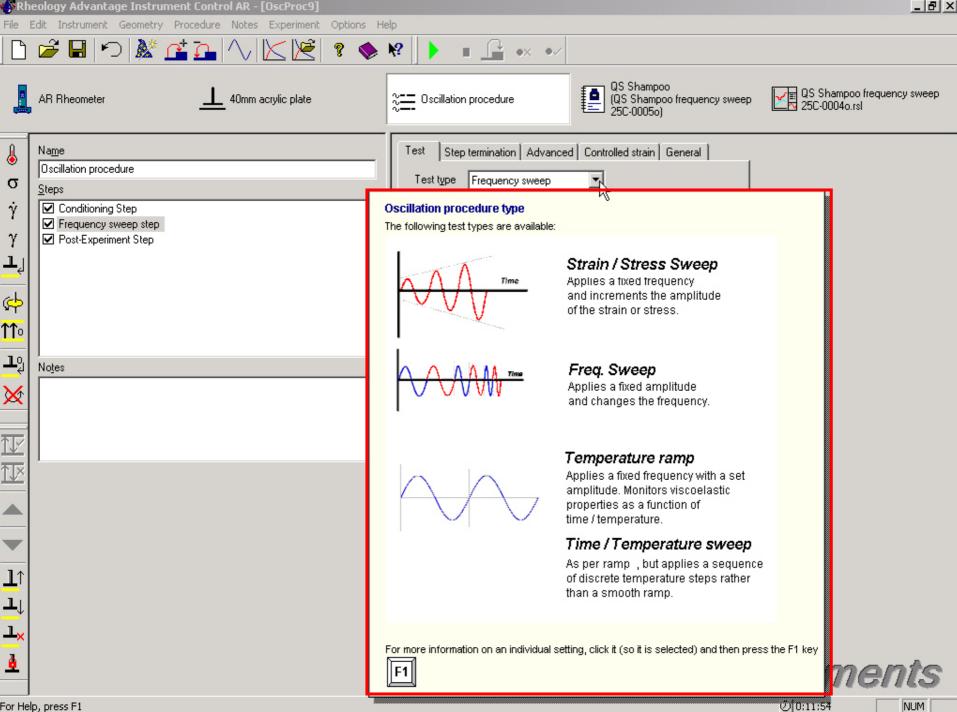

ି ଧର କାର୍ଯ୍ୟ କାର୍ଯ୍ୟ କାର୍ଯ୍ୟ Serial n

serial number	<u> ? ×</u>	
dar.		
sheft		
t swap geonebry		
mber (1000 - 999999)		 Select the Smart swap geometry radio button. The instrument will attempt to read the existing serial number and will return a value of 1000, if nothing car be read.
		4. Enter the serial number of the geometry (located on

From the AR-G2 manual

γ Rheology Advantage Instrument Control AR - [Instrument status]							
File Edit Instrument Geometry Procedure Notes Experiment Options Help							
	<u> 1</u> [1] [2] [2] [2]		?				
	AR Rheometer	40mm acrylic plate		QS Shampoo QS Shampoo frequency sweep QS Shampoo frequency sweep Ielp Topics: Rheology Advantage Help			
J	Parameter	Actual Value	R€	Contents Index Find Video clips			
σ	temperature	25.0	25	Click a topic, and then click Display. Or click another tab, such as Index.			
Ý	torque	-0.02		Opening, creating and saving information			
γ	shear stress	-1.910E-3	0	Sample handling Sessioning a test			
⊥ ,∣	velocity	0.02498		Rheometer operation Sector Temperature control			
¢	shear rate	0.4995	Ur	Tips & tricks Reference information			
<u>11</u> 0	displacement	-600.1990		Troubleshooting Section Compliance and safety information			
ר א א	strain	-12004	_	Image: Marken service Image: Marken service Image: Marken service Image: Marken service			
\sim	normal force	0.02100		Flow tests Creep tests			
<mark>î↓∕</mark>	viscosity	3.824E-3		Oscillatory tests			
<u>t</u> r	gap	70714	70	Appendix			
	sample compres	linear		Display Rint Cancel			
▼	gap monitor mode	gap value	4				
1 ↑	oven	fully open					
⊥ ⊥↓ ⊥×							
ר <mark>×</mark>							
<u>è</u>							

Rh	eolo	gy Advantage Instrument Control AR - [Instrument status]	- 8 ×
File E	Edit	🛷 Rheology Advantage Help	4
		File Edit Bookmark Options Help	
		Help Iopics Back Print $\leq <$	
	۵,	Oscillatory tests	sweep
	P te	We learn at an early age that materials may be gases, liquids or solids. But this is an oversimplification. Many industrial materials show behaviour which is neither completely liquid nor completely solid, but is somewhere between the two. Such materials are termed viscoelastic. Typical examples are polymer solutions and melts, and particulate dispersions such as paints, inks, drilling fluids, creams and lotions, and many types of foodstuffs.	
σ	tc	It is viscoelasticity which is responsible, at least in part, for the handling properties of these materials, and it is important that they should exhibit it in the correct degree. For example if a printing ink is too elastic (solid) it will fail to enter the nip, whereas if it is too liquid it will show poor dot definition. There are several ways of examining the viscoelastic properties of materials, but the commonest, and most versatile, is to use oscillatory rheology.	
Ļ	st Ye	If a sinusoidal stress, σ (force acting over an area), is placed on a <i>solid</i> sample, a sinusoidal displacement (strain, γ) will result which is in phase with the applied stress. The modulus, or stiffness, of the material can be obtained by dividing the amplitude of the stress, σ0, by the amplitude of the strain, γ0 (Figure 1):	
ډ¢ 1∿	st	A A A A Stress amplitude	
⊥ º	di st	$V V V V \downarrow $ strain amplitude	
	n	Figure 1 strain response to a sinusoidally applied stress for a solid material	
1↓′ 11	Υİ	If a sinusoidal stress is applied to a <i>liquid</i> sample, the stress is in phase with the rate of change of strain, and a phase lag of 90° is therefore introduced between the stress and the strain (Figure 2):	
	gi si	stress	
▼	g	· A A A A strain	
-	o	$\Psi \Psi \Psi \Psi \Psi$	
⊥↓ ⊥×			
4		Figure 2: strain response to a sinusoidally applied stress for a liquid material	-



0:14:01

🎻 Ri	🖗 Rheology Advantage Instrument Control AR - [Instrument status]							
<u>F</u> ile	<u>File E</u> dit <u>I</u> nstrument <u>G</u> eometry <u>P</u> rocedure <u>N</u> otes E <u>x</u> periment <u>O</u> ptions <u>H</u> elp							
	AR2000 L Standard-size DIN or conical Concentric cylinders Standard-size DIN or conical Concentr							
J	Parameter	Actual Value	Re	quired Value	Units			
	temperature	0	Un	known	°C			
σ							-1	
Ϋ́	torque	0		Help Topics: Rheolo	gy Advantage Help	? >	<u><</u>	
γ	shear stress	0	0	Contents Index Fi	nd Video clips			
⊥,				Cite in the second state		- I Harrish I - I I		
	velocity	1.500E-6		Llick a video, and th	hen click Display. Ur cli	ck another tab, such as Index.		
¢	shear rate	2.178E-5	Ur		rt-up and Shut-down			
↑ ↑₀				ີໝ Installing a ma ໃໝ່ Loading and t				
	displacement	124.1100						
1 %	strain	1801.7						
≫								
	normal force	-15.28						
	viscosity	0						
TF TF								
TIX	gap	Unknown	Ur					
	sample compres	normal force						
	gap monitor mode	none		1				
-	a Sector content				I	Rheology Advantage		
-	oven	fully open			Dia	In N Drivet Connect		
<u></u> 1↑					Disb	lay 💦 Erint Cancel	1	
ב↑ ב↓ ב×								
1,								
4								
-]							

Rheology Advantage Instrument Control AR - [USCProc9]		
File Edit Instrument Geometry Procedure Notes Experiment Options H		
🗅 🗳 🖬 🍤 🌋 💁 🔨 📐 🖄 🤹		
AR Rheometer <u> </u>	QS Shampoo (QS Shampoo frequency sweep 25C-0005o)	QS Shampoo frequency sweep 25C-0004o.rsl
L C L L L L L L L L L L L L L	Test Step termination Advanced Controlled strain General Test type Frequency sweep Image: Controlled strain General Help button Image: Controlled strain Image: Controlled strain Image: Controlled strain Points per glecade Image: Controlled strain Image: Controlled strain Image: Controlled strain Image: Controlled Variable Image: Controlled Variable Image: Controlled strain Image: Controlled strain	
<u> </u>	TA Ins	struments
Display help for clicked on buttons, menus and windows		0:11:21 NUM

R چے	heology Advantage Instrume	nt Control AR - [OscProc9] -			
	Edit Instrument Geometry P		Options H	elp	
	🖻 🖬 🗠 👗 🖸		? 🔶	₩? ▶ ■ <u>_</u> •× •~	
	AR Rheometer	⊥ 40mm acrylic plate		Conscillation procedure	QS Shampoo frequency sweep 25C-0004o.rsl
 σ γ μ <l< th=""><th>Name Oscillation procedure Steps ✓ Conditioning Step ✓ Frequency sweep step ✓ Post-Experiment Step Notes</th><th></th><th></th><th>Test Step termination Advanced Controlled strain General Test type Frequency sweep Image: Controlled strain General Test settings Image: Controlled strain Image: Controlled strain Image: Controlled strain Mode Log Image: Controlled strain Image: Controlled strain Image: Controlled strain Image: Controlled Variable Image: Controlled Variable Image: Controlled variable Image: Controlled variable Image: Controlled Variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled Variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled Variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Control variable Image: Controlled variable</th><th></th></l<>	Name Oscillation procedure Steps ✓ Conditioning Step ✓ Frequency sweep step ✓ Post-Experiment Step Notes			Test Step termination Advanced Controlled strain General Test type Frequency sweep Image: Controlled strain General Test settings Image: Controlled strain Image: Controlled strain Image: Controlled strain Mode Log Image: Controlled strain Image: Controlled strain Image: Controlled strain Image: Controlled Variable Image: Controlled Variable Image: Controlled variable Image: Controlled variable Image: Controlled Variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled Variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled Variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Controlled variable Image: Control variable Image: Controlled variable	
4				TA Ins	struments

Do

- Ensure a clean dry air supply at a stable pressure. Use a filter and dryer
- Check filter bowls for water & contaminants at least monthly
- Replace the air-bearing clamp before turning the air off
- Ensure air supply is on before turning the instrument on
- Take advantage of the training opportunities offered

Don't

- Operate instruments without air
- Touch the spindle without air being on if air is inadvertently turned off make sure power is turned off and wait till air turns back on before placing clamp on or turning power back on
- Operate without a water supply if using the Peltier
- Hesitate to contact us if you have any questions